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DYNAMIC MATCHING, TWO-SIDED INCOMPLETE INFORMATION, 
AND PARTICIPATION COSTS: EXISTENCE AND CONVERGENCE 

TO PERFECT COMPETITION 

BY MARK SATTERTHWAITE AND ARTYOM SHNEYEROV1 

Consider a decentralized, dynamic market with an infinite horizon and participation 
costs in which both buyers and sellers have private information concerning their values 
for the indivisible traded good. Time is discrete, each period has length 8, and, each 
unit of time, continuums of new buyers and sellers consider entry. Traders whose ex- 
pected utility is negative choose not to enter. Within a period each buyer is matched 
anonymously with a seller and each seller is matched with zero, one, or more buyers. 
Every seller runs a first price auction with a reservation price and, if trade occurs, both 
the seller and the winning buyer exit the market with their realized utility. Traders who 
fail to trade continue in the market to be rematched. We characterize the steady-state 
equilibria that are perfect Bayesian. We show that, as 8 converges to zero, equilibrium 
prices at which trades occur converge to the Walrasian price and the realized alloca- 
tions converge to the competitive allocation. We also show the existence of equilibria 
for 8 sufficiently small, provided the discount rate is small relative to the participation 
costs. 

KEYWORDS: Matching and bargaining, double auctions, price formation, founda- 
tions of Walrasian equilibrium. 

1. INTRODUCTION 

THE FRICTIONS OF ASYMMETRIC INFORMATION, search costs, and strategic be- 
havior interfere with efficient trade. Nevertheless economists have long be- 
lieved that for private goods economies, the presence of many traders over- 
comes these imperfections and results in convergence to perfect competition. 
Two classes of models demonstrate this. First, static double auction models in 
which traders' costs and values are private exhibit rapid convergence to the 
competitive price and the efficient allocation within a one-shot centralized 

1We owe special thanks to Zvika Neeman, who originally devised a proof that showed the 
strict monotonicity of strategies. We also thank Hector Chade, Patrick Francois, Paul Milgrom, 
Dale Mortensen, Peter Norman, Mike Peters, Jeroen Swinkels, Asher Wolinsky, Jianjun Wu, 
Okan Yilankaya, and two very perceptive anonymous referees; the participants at the Electronic 
Market Design Meeting (June 2002, Schloss Dagstuhl), the 13th Annual International Confer- 
ence on Game Theory at Stony Brook, the 2003 NSF Decentralization Conference held at Pur- 
due University, the 2003 General Equilibrium Conference held at Washington University, the 
2003 Summer Econometric Society Meeting held at Northwestern University, the 2004 Canadian 
Economic Theory Conference held in Montreal, and Games 2004 held at Luminy in Marseille; 
seminar participants at Carnegie-Mellon, Washington University, Northwestern University, Uni- 
versity of Michigan, Harvard and MIT, University of British Columbia, and Stanford; and the 
members of the collaborative research group on Foundations of Electronic Marketplaces for 
their constructive comments. Adam Wong provided excellent research assistance. Finally, both 
of us acknowledge gratefully that this material is based on work supported by the National Sci- 
ence Foundation under Grant IIS-0121541. Artyom Shneyerov also acknowledges support from 
the Canadian SSHRC Grant 410-2003-1366. 
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market. Second, dynamic matching and bargaining models in which traders' 
costs and values are common knowledge also converge to the competitive equi- 
librium. The former models are unrealistic in that they assume traders who fail 
to trade now cannot trade later. Tomorrow (almost) always exists for economic 
agents. The latter models are unrealistic in assuming traders have no private 
information. Information about a trader's cost/value (almost) always contains 
a component that is private to him. This paper's contribution is to formulate a 
natural model of dynamic matching and bargaining with two-sided incomplete 
information and to show that it converges to the competitive allocation and 
price as frictions vanish. 

An informal description of our model and result is this: An indivisible good 
is traded in a market in which time progresses in discrete periods of length 8 
and generations of traders overlap. Each unit of time traders who are active 
in the market incur a participation cost K and a discount rate /3. Thus the per 
period participation cost is 8K, the per period discount factor is e-88, and they 
both vanish as the period length converges to zero. Each period every active 
buyer randomly matches with an active seller. Depending on the luck of the 
draw, a seller may end up being matched with several buyers, a single buyer, or 
no buyers. Each seller solicits a bid from each buyer with whom she is matched 
and, if the highest of the bids is satisfactory to her, she sells her single unit of 
the good, and both she and the successful buyer exit the market. A buyer or 
seller who fails to trade remains in the market, is rematched the next period, 
and tries again to trade. 

Each unit of time a large number of potential sellers (formally, measure 1 of 
sellers) consider entry into the market along with a large number of potential 
buyers (formally, measure a of buyers). Each potential seller independently 
draws a cost c in the unit interval from a distribution Gs and each potential 
buyer draws independently a value v in the unit interval from a distribution GB. 
Individuals' costs and values are private to them. A potential trader enters the 
market only if, conditional on his private cost or value, his equilibrium expected 
utility of entry is at least zero. Potential traders whose discounted expected 
utilities are negative elect not to participate. 

If, in period t, trade occurs between a buyer and seller at price p, then they 
exit with their gains from trade, v - p and p - c, respectively, less their partic- 
ipation costs accumulated at the discount rate 3 from their times of entry on- 
ward. If 8 is large (i.e., periods are long), then participation costs accumulate 
in a short number of periods and a trader who chooses to enter must be confi- 
dent that he can obtain a profitable trade without much search. If, however, 8 
is small, then a trader can wait through many matches looking for a good price 
with little concern that participation costs and discounting will offset his gains 
from trade. This option value effect drives convergence and puts pressure on 
traders on the opposite side of the market to offer competitive terms. As 8 
becomes small, the market for each trader becomes, in effect, large. 

We characterize steady-state equilibria for this market in which each agent 
maximizes his expected utility going forward. We show that, as the period 
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length 8 goes to zero, all such equilibria converge to the Walrasian price and 
the competitive allocation. The Walrasian price pw in this market is the solu- 
tion to the equation 

(1) Gs(Pw) 
= a(1 - GB(pw)), 

i.e., it is the price at which the measure of entering sellers with costs less 
than pw equals the measure of entering buyers with values greater than pw. 
If the market were completely centralized with every active buyer and seller 
participating in an exchange that cleared each period's bids and offers simulta- 
neously, then pw would be the market clearing price each period. Our precise 
result is this. Among active traders, let c- and v, be the maximal seller's type 
and minimal buyer's type, respectively, and let [Ps, pa] be the range of prices 
at which trades occur. Also let c, be the smallest bid acceptable to any active 
seller. As 8 -- 0, then c8, cf, vs, 8p, and P3 all converge to the same limit p. 
In the steady state, the only way for the market to clear is for this limit p to be 
equal to the competitive price pw. That the resulting allocations give traders 
the expected utility they would realize in a perfectly competitive market fol- 
lows. Finally, we show that if the period length 8 and, relative to the level of 
participation costs K, the discount rate /3 are both sufficiently small, then a full 
trade equilibrium exists. Full trade equilibria are a special class of equilibria 
in which active sellers immediately trade on being matched with at least one 
buyer. 

This is a step toward a theory of how a completely decentralized, dynamic 
market with two-sided incomplete information and participation costs imple- 
ments, increasingly well, an almost efficient allocation as the speed with which 
traders are able to seek out potential trading partners increases. In making 
this step we assume independent private values, which means that all traders 
a priori know the underlying Walrasian price in the market. In the theory that 
we ultimately seek, traders would have less restrictive preferences (e.g., cor- 
related private values or interdependent values) in which the Walrasian price 
follows some stochastic process. Efficient trade would therefore require that 
traders' equilibrium strategies reveal sufficient information not only to iden- 
tify the most valuable currently feasible trades, but also to reveal the underly- 
ing, changing Walrasian price even as it simultaneously facilitates trade at that 
price. A complete theory would both identify sufficient conditions for which 
convergence to an efficient allocation and Walrasian price is guaranteed, and 
show how, when those conditions are not met, the equilibrium may fail to con- 
verge to efficiency. 

We hope that the insights and results here will contribute to the development 
of such a theory. This paper first shows that convergence to one price occurs 
and is driven by option value: as 8, the length of a period, decreases, each 
trader becomes more willing to decline a merely decent offer so as to preserve 
the option to accept a really excellent offer in the future. With both buyers and 
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sellers doing this, the price distribution in the market rapidly narrows as 8 be- 
comes small. Second, it shows that the price distribution must converge to the 
Walrasian price because if an equilibrium exists in which it does not, then too 
many traders accumulate on the long side of the market, which creates incen- 
tives for these traders to deviate from their equilibrium strategies by bidding 
more aggressively. We would be surprised if either of these insights fails to 
carry over to models with less restrictive processes for generating valuations. 

This progression has been true for static double auctions. Almost all the 
early papers assumed independent private values, e.g., Chatterjee and Samuel- 
son (1983), Myerson and Satterthwaite (1983), Gresik and Satterthwaite 
(1989), Satterthwaite and Williams (1989a, 1989b), Williams (1991), and Rusti- 
chini, Satterthwaite, and Williams (1994). Recently Cripps and Swinkels (2006) 
and Fudenberg, Mobius, and Szeidl (in press) have generalized rates of con- 
vergence results from the independent private values environment to the cor- 
related private values case. Furthermore, Reny and Perry (2003), in a carefully 
constructed model with interdependent valuations, showed that the static dou- 
ble auction equilibrium exists and converges to a rational expectations equilib- 
rium as the number of traders on both sides of the market becomes large. 

A substantial literature exists that investigates the noncooperative founda- 
tions of perfect competition using dynamic matching and bargaining games.2 
Most of the work of which we are aware has assumed complete informa- 
tion in that each participant knows every other participant's values (or costs) 
for the traded good. The books of Osborne and Rubinstein (1990) and 
Gale (2000) contain excellent discussions of both their own and others' contri- 
butions to this literature. Papers that have been particularly influential include 
Mortensen (1982), Rubinstein and Wolinsky (1985, 1990), Gale (1986, 1987), 
and Mortensen and Wright (2002). Of these, our paper is most closely related 
to the models and results of Gale (1987) and Mortensen and Wright (2002). 
The two main differences between their work and ours are that (i) when two 
traders meet, they reciprocally observe the other's cost/value rather than re- 
maining uninformed and (ii) the terms of trade are determined as the out- 
come of a full information bargaining game rather than an auction. The first 
difference-full versus incomplete information-is fundamental, because the 
purpose of our paper is to determine if a decentralized market can elicit pri- 
vate valuation information at the same time it uses that information to assign 
the available supply almost efficiently. The second difference is natural given 
our focus on incomplete information. 

The most important dynamic bargaining and matching models that in- 
corporate incomplete information are Wolinsky (1988), De Fraja and S iko- 

2There is a related literature that we do not discuss here that concerns the microstructure of 
intermediaries in markets, e.g., Spulber (1999) and Rust and Hall (2002). These models allow 
entry of an intermediary who posts fixed ask and offer prices, and is assumed to be large enough 
to honor any size buy or sell order without exhausting his or her inventory or financial resources. 
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vies (2001), and Serrano (2002).3,4 To understand how our paper relates to 
these papers, consider the following problem as the baseline. Each unit of 
time, fixed measures of sellers and buyers enter the market, each of whom 
has a private cost/value for a single unit of the homogeneous good. The sellers' 
units of supply need to be reallocated to those traders who most highly value 
them. Whatever mechanism that is employed must induce the traders to reveal 
sufficient information about their costs/valuations so as to carry out the reallo- 
cation. The static double auction results of Satterthwaite and Williams (1989a) 
and Rustichini, Satterthwaite, and Williams (1994) show that even moderately 
sized centralized double auctions held once per unit time solve this problem es- 
sentially perfectly by closely approximating the Walrasian price and then using 
that price to mediate trade.5 

Given this definition of the problem, the reason why Wolinsky (1988), Ser- 
rano (2002), and De Fraja and Saikovics (2001) do not obtain competitive out- 
comes as the frictions in their models vanish is clear: the problems their models 
address are different and, as their results establish, not intrinsically perfectly 
competitive even when the market becomes almost frictionless. Thus Wolin- 
sky's model relaxes the homogeneous good assumption and does not fully ana- 
lyze the effects of entry/exit dynamics. Serrano's model embeds a discrete-price 
double auction mechanism in a dynamic matching framework. There are, how- 
ever, no entering cohorts of traders. Consequently, the option-value effects 
become progressively smaller as the most avid buyers and sellers leave the 
market through trading and are not replaced. As the market runs down and 
becomes small, necessarily it becomes less and less competitive. Not surpris- 

3Butters (circa 1979) in an unfinished manuscript that was well before its time considered 
convergence in a dynamic matching and bargaining problem. The main differences between our 
model and his are (i) he assumes an exogenous exit rate instead of a participation cost, (ii) traders 
who have zero probability of trade participate in the market until they exit stochastically due to 
the exogenous exit rate, and (iii) the matching is one-to-one and the matching probabilities do not 
depend on the ratio of buyers and sellers in the market. We thank Asher Wolinsky for bringing 
Butters' manuscript to our attention after we had completed an earlier version of this paper. 

4In a companion paper, we (Satterthwaite and Shneyerov (2003)) considered a dynamic match- 
ing and bargaining model that has no participation costs, but instead has the alternative friction 
of a fixed, exogenous, per unit time rate of exit among active traders. For this model we show 
convergence to pw as the period length becomes short, but have not been able to show existence. 
There are two main effects of substituting an exit rate for participation costs. First, traders who 
enter with positive expected utility do not necessarily trade; they may spontaneously exit with 
zero utility prior to making a successful match. This makes market clearing more subtle and, as 
a consequence, demonstrates more clearly than this paper's model the power of supply and de- 
mand to force price to converge to pw. Second, the structure of equilibrium strategies is different 
than in the participation cost case. In particular, full trade equilibria, which play a leading role in 
this paper's existence proof, are easily shown not to exist. 

SAnother example of a centralized trading institution is the system of simultaneous ascending- 
price auctions, studied in Peters and Severinov (2006). They also found robust convergence to 
the competitive outcome. 
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ingly Serrano finds that "equilibria with Walrasian and non-Walrasian features 
persist." 

Closest to our model is De Fraja and Sikovics' model. Traders search for 
the best price in a market similar to the market we study. Option value drives 
the market to one price, much as in our model. Its entry/exit specification, 
however, is quite different than our specification in that it does not specify 
that fixed measures of buyers and sellers enter the market each unit of time as 
in our baseline problem. Instead, whenever two traders consummate a trade 
and exit the market, then two traders of identical types replace them. This 
means that, no matter what limiting price the market converges to as search 
becomes cheap, the distribution of traders' valuations in the market remains 
constant. Consequently, if the limiting price is above the Walrasian price, then 
sellers do not accumulate in the market and, unlike in our model, sellers have 
no incentive to reduce the prices that they ask. Supply and demand does not 
affect price in De Fraja and Sikovics' model. Instead, the exogenously specified 
balance of bargaining power determines the limiting price. 

The next section formally states the model and our convergence and exis- 
tence results. Section 3 derives basic properties of equilibria. Section 4 proves 
convergence for all equilibria and Section 5 proves that, for sufficiently small 8 
and p, the special class of equilibria-full trade equilibria-exist. Section 6 
concludes. 

2. MODEL AND THEOREMS 

We study the steady state of a market with two-sided incomplete informa- 
tion and an infinite horizon. In it heterogeneous buyers and sellers meet once 
per period (t = ..., -1, 0, 1,...) and trade an indivisible, homogeneous good. 
Every seller is endowed with one unit of the traded good and has cost c E [0, 1]. 
This cost is private information to her; to other traders it is an independent ran- 
dom variable with distribution Gs and density gs. Similarly, every buyer seeks 
to purchase one unit of the good and has value v E [0, 1]. This value is private; 
to others it is an independent random variable with distribution GB and den- 
sity gB. Our model is therefore the standard independent private values model. 
We assume that the two densities are bounded away from zero: a g > 0 exists 
such that, for all c, v E [0, 1], gs(c) > g and gB(v) > g. 

The strategy of a seller, S: [0, 1] -- R U {A}, maps her cost c into either a 
decision A" not to enter or a minimal bid that she is willing to accept. Similarly 
the strategy of a seller, B: [0, 1] -- R U {A/}, maps his value v into either a 
decision N not to enter or the bid that he places when he is matched with a 
seller. A trader only enters if his expected discounted utility from doing so is 
nonnegative; if he elects not to enter, he receives utility zero. 

The length of each period is 8 > 0. Each unit of time, measure 1 of poten- 
tial sellers and measure a of potential buyers consider entry, where a > 0. This 
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means that each period, measure 8 of potential sellers and measure 5a of po- 
tential buyers consider entry. A period consists of five steps: 

1. Entry occurs. A type v potential buyer becomes active only if B(v) = K 
and a type c potential seller becomes active only if S(c) : A. 

2. Every active seller and buyer incurs participation cost 8K, where K > 0 is 
the cost per unit time of being active. 

3. Each active buyer is randomly matched with one active seller. Conse- 
quently, every seller is equally likely to end up matched with any active 
buyer. The probability wTk that a seller is matched with k E {0, 1, 2,...} 
buyers is therefore Poisson, 

(k (2) 
rk (J)= k!e ' 

where " is the endogenous ratio of active buyers to active sellers.6 Conse- 
quently, a seller may end up being matched with zero buyers, one buyer, 
two buyers, etc. These matches are anonymous, i.e., no trader knows the 
history of any trader with whom he or she happens to be matched. 

4. Each buyer simultaneously announces a bid B(v) to the seller with whom 
he is matched. We assume that, at the time he submits his bid, each buyer 
only knows the endogenous steady-state probability distribution of how 
many buyers with whom he is competing. After receiving the bids, the 
seller either accepts or rejects the highest bid. Denote by S(c) the minimal 
bid (i.e., reservation price) acceptable to a type c seller. If two or more 
buyers tie with the highest bid, then the seller uses a fair lottery to choose 
between them. If a type v buyer trades in period t, then he leaves the 
market with utility v - B(v). If a type c seller trades at price p, then she 
leaves the market with utility p - c, where p is the bid she accepts. 

5. All remaining traders carry over to the next period. 
Traders discount their expected utility at the rate/3 > 0 per unit time; e-P8 is 
therefore the factor by which each trader discounts his utility per period of 
time. 

To formalize the fact that the distribution of trader types within the market's 
steady state is endogenous, let Ts be the measure of active sellers in the market 
at the beginning of each period, let TB be the measure of active buyers, let Fs 
be the distribution of active seller types, and let FE be the distribution of active 
buyer types. The corresponding densities are fs and fB and, establishing useful 
notation, the right-hand distributions are Fs = 1 - Fs and FB = 1 

- FB. The 
ratio 

s 
is therefore equal to TBI Ts. 

'In a market with M sellers and 'M buyers, the probability that a seller is matched with k 
buyers is ?M ( k -k )M-k. Poisson's theorem (see, for example, Shiryaev (1995)) 
shows that 

limM_, 
T = 
M 

k 
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By a steady-state equilibrium we mean one in which every seller in every 
period plays a time invariant strategy S(.), every buyer plays a time invari- 
ant strategy B(.), and both these strategies are always optimal. Let Ws(c) and 
WB(v) be the sellers' and buyers' interim utilities for sellers of type c and buy- 
ers of type v, respectively, i.e., they are beginning-of-period steady-state equi- 
librium net payoffs conditional on their types. Given the friction 8, a market 
equilibrium M8 consists of strategies {S, B), traders' masses {Ts, TB), and dis- 
tributions {Fs, FB} such that (i) {S, B), {Ts, TB), and {Fs, FB} generate {Ts, TB) 
and {Fs, FBI as their steady state and (ii) no type of trader can increase his or 
her expected utility (including the continuation payoff from matching in future 
periods if trade fails) by a unilateral deviation from the strategies {S, B), and 
(iii) equilibrium strategies {S, B), masses {Ts, TB), and distributions {Fs, FB} 
are common knowledge among all active and potential traders. We study per- 
fect Bayesian equilibria of this model. (See Definition 8.2 in Fudenberg and 
Tirole (1991, p. 333).) 

Four points need emphasis concerning this setup. First, because within a 
given match buyers announce their bids simultaneously and only then does the 
seller decide to accept or reject the highest of the bids, the subgame perfec- 
tion aspect of perfect Bayesian equilibria implies that a seller whose highest 
received bid is above her dynamic opportunity cost of c + e-P Ws(c) accepts 
that bid. In other words, a seller's strategy is her dynamic opportunity cost, 

S(c) = c + e-05Ws(c), 

and is independent of the number of buyers who are bidding, i.e., S(c) is her 
reservation price. Second, beliefs are simple to handle because our assump- 
tions that there are continuums of traders, that all matching is anonymous, and 
that traders' values and costs conform to the standard independent private val- 
ues model imply that off-the-equilibrium path actions do not cause inference 
ambiguities. Third, step 5 within each period requires every trader who enters 
to stay in the market until he eventually succeeds in trading. Obviously, given 
that our goal is modeling a decentralized market, this is inappropriate; traders 
should be free to exit. However, given independent private values and a steady- 
state equilibrium, forbidding exit has no loss of generality. The reason is that 
a trader only enters the market if his expected utility is nonnegative. Being 
in a steady state implies that if he had nonnegative expected utility when he 
entered, then at the beginning of any subsequent period after failing to trade 
he has the same nonnegative utility going forward. Even if exit without trade 
were permitted, he would not do so. Fourth, an uninteresting no-trade equilib- 
rium always exists in which all potential buyers and sellers decline to enter. We 
analyze equilibria in which positive trade occurs, i.e., equilibria in which each 
period positive measures of buyers and sellers enter and ultimately trade. 

Let c and v be the maximal seller and minimal buyer types that choose to 
enter. These are the marginal participation types. Let c, p, and p be, respec- 
tively, the lowest bid that is acceptable to the cost zero seller, the lowest bid any 
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active buyer makes, and the highest bid that any active buyer makes. Formally, 
define As c [0, 1] and AB C [0, 1] to be the sets of active seller and buyer types, 
respectively. Then 

(3) c - sup{clc E As} (maximum active seller type), 
v - inf{vlv e AB) (minimum active buyer type), 
c = inf{S(c) c c As} (minimum acceptable bid), 

p = inf{B(v) Iv E AB} (maximum bid), 

p = sup{B(v)Iv E AB} (minimum bid). 

Subsequent Figures 1 and 3, among other purposes, illustrate how these de- 
scriptors summarize an equilibrium's structure. 

Given an equilibrium M5, we index with 8 its components S5, B8, Fss, FB8, 
Ts5, TBs, and (, and its descriptors 

c, _v, 
c5, p., and p8. This notation allows 

us to state our convergence result: 

THEOREM 1: Fix K > 0 and > O0. Suppose that a 6 > 0 exists such that 
for all 8 E (0, 8) a market equilibrium M8 exists in which positive trade occurs. 
Let {Ic, 

?v_, 
, , p }1 be the descriptors of these equilibria, and let Ws5(c) and 

WB8 (v) be traders' interim expected utilities. Then 

(4) lim = lim5=lim =limc8 =lim p =lim p = pw. 
8-+0 8--+0 8-0 - 8 

In addition, each trader's interim expected utility converges to the utility he would 
realize if the market were perfectly competitive: 

(5) lim Wss(c) = max[0, pw - c] 
5-+0 

and 

(6) lim WB,(v) = max[0, v - pw]. 8-+0 

Sections 3 and 4 prove this theorem. In Section 5, given K > 0, we prove, 
for sufficiently small P and 6, that a special class of equilibria-full trade 
equilibria-exists and results in positive trade. Formally a full trade equilib- 
rium is an equilibrium in which c- = 

_v. 
Figure 1 diagrams such an equilibrium 

and shows each of the descriptors c5, c,, cs, p , and pR. We call these equilibria 
full trade because if, in a particular period, a seller is matched with at least one 
buyer, then that seller for sure trades no matter what her cost ci is and what the 
matched buyer(s) value vj is. In a full trade equilibrium, trade occurs as fast as 
possible among active sellers and buyers. The theorem is this: 
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S,(c), B,6(v) 

Tr 
I I 
I I 
I I 
I I 
I I 
I I 
I I B,5 (1) =p,5 

IPI 
I I 
I I 
I I 
I I 

I I 
I I s0cc --- --- ----,Bv 

,5 (,5 9 
-------------- 

) p5 
I 

S,5 ( )I I- 

C15V9I ~ 

FIGURE 1.-Strategies in full trade equilibrium. 

THEOREM 2: Forgiven K > 0, a neighborhood X of the point (0, O0) exists such 
that for all nonnegative p and positive 6 in X, an equilibrium M5 exists in which 
positive trade occurs. 

Two points deserve emphasis. First, the restriction that /3 must be small rel- 
ative to K implies that our existence theorem concerns situations in which par- 
ticipation costs, not delay per se, are the issue. Section 5.3, which discusses 
the existence result, develops intuition about why the /3-K ratio is important. 
Second, we do not know if all equilibria are full trade or not. Conceivably for 
some parameter values, a sequence of full trade equilibria may not exist, but a 
sequence of non-full-trade equilibria in which c8 > v, may exist. If so, conver- 
gence of price to pw is guaranteed because Theorem 1 applies to all sequences 
of equilibria. 

The intuition for our convergence result can be understood through the fol- 
lowing logic. In a match in which a buyer is bidding for an object, the "type" 
that is relevant is not his static type v, but rather his dynamic opportunity value 

IBs(V) = v - e- 8WBs(v). 

Similarly the cost that is relevant to a type c seller is not c, but her dynamic 
opportunity cost 

Iss(c) = c + e-,8Ws5(c). 
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When the buyers bid in the auction, they act as if their types were drawn from 
the density hBs(.) 

of IBs(v) and the sellers' types were drawn from the density 
hs8(.) of Is8(c). Because limo0 Wss(c) = max[0, Pw - c] and lim8s0 WB5(v) = 
max[0, v - pw], the convergence theorem indicates that as the time period 
length 8 5 0, the distributions of the "dynamic types" Is8(c) and IB8(v) ap- 
proach pw and become degenerate: the distribution of sellers' dynamic oppor- 
tunity costs concentrates just below c8 and the distribution of buyers' dynamic 
opportunity costs concentrates just above v.. Viewed this way, as 8 -- 0, the 
dynamic matching and bargaining market in equilibrium progressively exhibits 
less and less heterogeneity among buyers and sellers until there is none and 
the incomplete information vanishes. The underlying driver that causes the 
heterogeneity to vanish as 8 -- 0 is the option value that each trader's optimal 
search generates. This is the same pathway that drives convergence in the full 
information matching and bargaining models of Gale (1987) and Mortensen 
and Wright (2002). In their models, as in our model, the option value that op- 
timal search creates causes the distributions of buyers' and sellers' dynamic 
opportunity costs to become degenerate as the friction goes to zero. Once this 
is understood, our result that incomplete information does not disrupt conver- 
gence is natural. 

Figure 2 is a table of graphs that illustrate the general character of these 
equilibria and the manner in which they converge. These computed examples 
assume that the primitive distributions Gs and GB are uniform on [0, 1], equal 
masses of buyers and sellers consider entry each unit of time (i.e., a = 1), the 
participation cost is K = 1, and discount rate is /3 = 1.7 The left column shows 
an equilibrium for 8 = 0.10, while the right column shows an equilibrium for 
8 = 0.02. Traders' costs and values, c and v, are on each graph's abscissa. The 
top graph in each column shows strategies: sellers' strategies S(c) are to the 
left and above the diagonal while buyers' strategies B(v) are to the right and 
below the diagonal. Because masses of entering traders are equal and their 
cost/value distributions are uniform, the Walrasian price is 0.5; this is the hor- 
izontal line cutting the center of the graph. Observe also that B(v) and S(c) 
are not defined for nonentering types. Comparison of the strategies in the top 
two graphs illustrates the convergence of all the descriptors {(c-, v5, c,, p , fsI 
toward pw as 8 decreases from 0.10 to 0.02. 

The middle graph in each column shows the endogenous densities, fs and fB, 
of active traders in the equilibrium. The density fs for active sellers is on the 
left and the density for active buyers is on the right. Note that to the right 
of c the density fs is zero because sellers with c > c choose not to enter. Simi- 
larly, to the left of v the density fs is zero. These two densities show that both 
high value, active sellers and low value, active buyers often have to wait before 

In computing these equilibria, we numerically solve Equations (44) and (45) from Section 5.1 
that characterize a full trade equilibrium. See also the discussion in Section 5.3. The Mathematica 
program that was used is available upon request. 
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FIGURE 2.-Equilibrium strategies and associated steady-state densities. The left column of 
graphs is for 8 = 0.10 and the right column is for 8 = 0.02. The top row shows buyer and seller 
strategies S and B. The middle row graphs the densities fs and fB of the traders' types, and the 
bottom row graphs the densities hs and hB of the traders' dynamic opportunity costs and values. 
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trading and, therefore, accumulate in the market. The bottom graph in each 
column shows the equilibrium densities hs and hB of the dynamic opportu- 
nity costs and values, and dramatically demonstrates how, as 8 decreases, the 
heterogeneity of traders' dynamic opportunity costs and values narrows. 

The ex ante expected utility of a trader is 

W5=I 
Ws,(c)[gs (c) dc 

+1a 
WB(v)gB(v) dAv, 

1+a fI+ 1+a o 

where the weights on sellers' and buyers' ex ante utilities depend on the mea- 
sure a of potential buyers who consider entry each period relative to the mea- 
sure 1 of potential sellers who consider entry each period. For the two equi- 
libria graphed in Figure 1, Wo0.1 = 0.0564 and W0.02 = 0.1088. In the limit, when 
8 -+ 0 and the market is perfectly competitive, Wo0.0 = 0.1250. Define the rel- 
ative inefficiency per trader of an equilibrium M, to be (Wo - Ws)/ Wo. The 
relative inefficiency of the graphed 8 = 0.10 equilibrium is 0.548 and the rela- 
tive inefficiency of the graphed 8 = 0.02 equilibrium is 0.129. This convergence 
toward 0 is driven by two distinct mechanisms. First, the direct effect of cut- 
ting 8, the period length, from 0.10 to 0.02 is that even if traders' strategies 
remained unchanged, then the decrease in 8 reduces by a factor of 5 the wait 
before trading for all traders who are not lucky enough to trade immediately 
upon entry. Second, the gap between buyers' and sellers' strategies reduces, 
resulting in fewer traders who should trade-sellers for whom c < 0.5 and buy- 
ers for whom v > 0.5-but do not trade. Thus, when 8 = 0.10, sellers whose 
cost c is in the interval (0.347, 0.500) do not trade even though they would in 
the competitive limit. When 8 = 0.02, however, this interval shrinks in length 
by approximately a factor of 5 to (0.470, 0.5000), which results in a second 
efficiency gain. 

One final comment concerning the model and theorems is important. In set- 
ting up the model, we assume that traders use symmetric pure strategies. We 
do this for simplicity of exposition. At a cost in notation we could define trader- 
specific and mixed strategies, and then prove that they in fact must be symmet- 
ric and (essentially) pure because of independence, anonymity in matching, 
and the strict monotonicity of strategies. To see this, first consider the impli- 
cation of independence and anonymous matching for buyers. Even if different 
traders follow distinct strategies, every buyer would still independently draw his 
opponents from the same population of active traders.8 Therefore, for a given 
value v, every buyer will have the identical best-response correspondence. Sec- 
ond, we show below that every selection from this correspondence is strictly 
increasing; consequently, the best response is pure apart from a measure zero 
set of values where jumps occur. These jump points are the only points where 
mixing can occur, but because their measure is zero, the mixing has no conse- 
quence for the maximization problems of the other traders. 

8This is strictly true because we assume a continuum of traders. 
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3. BASIC PROPERTIES OF EQUILIBRIA 

In this section we derive formulas for probabilities of trade and establish the 
strict monotonicity of strategies. These facts are inputs to the proofs in the 
next two sections. We separate them out because they apply for all 8 > 0. We 
emphasize that they apply to all equilibria, not just full trade equilibria. 

3.1. Discounted Ultimate Probability of Trade and Participation Cost 

An essential construct for the analysis of our model is the discounted ulti- 
mate probability of trade. It allows a trader's expected gains from participating 
in the market to be written as simply as possible. In the steady state, let ps(A) 
be the probability of trade in a given period of a seller who chooses reservation 
price A and, similarly, let pB(A) be the probability of trade in a give period of a 
buyer who chooses bid A. Also, let ps(A) = 1 - ps(A) and pB(A) = 1 - pB(A). 

Define PB(A) recursively to be a buyer's discounted ultimate probability of 
trade if he bids A: 

PB(A) = pB(A) + PB(A)e-C"PB(A). 

Therefore, 

pB(A) (7) PB = 1 - e-0 + e-PapB(A) 

Observe that this is, in fact, a discount factor because every active trader ul- 
timately trades. Its interpretation as a probability follows from formula (9), 
which follows. The parallel recursion for sellers implies that 

(8) Ps(A) = 1 - e-,8 + e-.Pps(A) 

This construct is useful within a steady-state equilibrium because it converts 
the buyer's dynamic decision problem into a static decision problem. Specif- 
ically, the discounted expected utility WB of a type v buyer who follows the 
stationary strategy of bidding A is 

WB(A, v) = pB(A)(V - A) - KS + PB(A)Ce- " WB(A, v). 

Solving this recursion gives the explicit formula 

(9) W"(A, v) = Ps(A)(v - A) - KB(A), 

where 

K8 PsB(A) (10) KB(A) 1 = K B(A) 1 - e-p,8 + e-Pap1P(A) ps(A) 
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is the buyer's expected discounted participation costs over his lifetime in the 
market. To get intuition for the last equation, note that l/pB(A) is the expected 
lifetime of a trader in the market, so that K6/pB(A) is the expected participa- 
tion cost over the lifetime. The discounted participation cost KB(A) equals the 
expected participation cost over the lifetime times the discount factor PB(A). 
Similarly, the discounted expected utility Ws of a type c seller who follows the 
stationary strategy of accepting bids of at least A is 

(11) Ws(A, c) = Ps(A)(A - c) - Ks(A), 

where 

KS 
(12) Ks(A) =- 1 - e- + e- 3ps(A) 
is the discounted participation cost of a seller who asks A. In accord with our 
convention for nonentering types, we assume that 

pB(,A) 
= ps(nA) = KB(hA) = Ks(,V) = 0. 

In Section 3.3 we derive explicit formulas for 
pB(') 

and ps(.) 

3.2. Strategies Are Strictly Increasing 
This subsection demonstrates the most basic property that our equilibria sat- 

isfy: strategies are strictly increasing. We need the following preliminary result. 

LEMMA 3: In equilibrium, PB[B(-)] is nondecreasing and Ps[S(.)] is nonin- 
creasing over [0, 1]. The buyers for whom v > v elect to enter, while the buyers for 
whom v < v do not: 

(v, 1] C AB, [0, V) C AB. 

The type v is indifferent between entering and not entering. Similarly, 

[0, c) CAs, (c, 1]C As, 

and the type c is indifferent between entering or not. 

Equation (3) and Lemma 3 define the sets AB and As and the descriptors v 
and c. 

PROOF OF LEMMA 3: The buyer's interim utility, 

WB(v) = sup (v- A)PB(A) - KB(A) 
AERU{A} 

= (v - B(v))PB(B(v)) - KB(B(v)), 
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is the upper envelope of a set of affine functions. It follows by the envelope the- 
orem that WB(.) is a continuous, increasing, and convex function. Because WB 
is continuous, the definition of v = inf{v: v e AB} implies that (i) Ws(v) = 0 
and v is indifferent between entering or not, and (ii) the types v < v prefer 
not to enter. Furthermore, convexity implies that WB(.) is nondecreasing. By 
the envelope theorem, WA(.) = PB[B(.)]; PB[B(-)] is therefore nondecreasing 
at all differentiable points. Milgrom and Segal's (2002) Theorem 1 implies that 
at nondifferentiable points v' E [0, 1], 

lim WB(v) < PB(B(v')) < lim WB(v). 
V--- *Vt- v--* vl + 

Thus PB[B(.)] is everywhere nondecreasing for any best response B. Further- 
more, Milgrom and Segal's Theorem 2 implies that 

(13) WB(v) = WB(v) + JPB[B(x)] dx for v > v. 

Because v is indifferent between entering or not, we can choose a best re- 
sponse B in which v is active, while B(v) = B(v) for v : v. Response B may 
different from B at v = v, because in B, the type v is active, while in B he may 
not be. Importantly, the function WB(.) is the same for both B and B, because 
by Milgrom and Segal's Theorem 2, the envelope condition (13) holds for any 
selection from the best-response correspondence. Now PB[B(v)] > 0, because 
otherwise the active buyer v would not be able to recover his positive partici- 
pation cost. Because PB[B(.)] is nondecreasing, PB[B(v)] > 0 for all v > v, and 
the envelope condition (13) then implies that the buyers for whom v > v elect 
to enter. The argument for the sellers is parallel and is omitted. Q.E.D. 

Recall that we assume if a potential trader's expected utility from entering 
is at least zero, then he or she enters. Thus types v and c enter, which keeps 
our notation simple. Because {v} and {c) have measure 0, all our results would 
hold in substance under the alternative assumption that entry occurs only if 
expected utility is positive. 

LEMMA 4: Response B is strictly increasing on [v, 1]. 

PROOF: Pick any v, v' E [v, 1] such that v < v'. Because PB[B(.)] is non- 
decreasing, PB[B(v)] < PB[B(v')] necessarily. We first show that B is nonde- 
creasing on [v, 1]. Suppose, to the contrary, that B(v) > B(v'). The auction 
rules imply that PB(*) is nondecreasing; therefore, PB[B(v)] > PB[B(v')]. Con- 
sequently, PB[B(v)] = Ps[B(v')] > 0. However, this gives v incentive to lower 
his bid to B(v'), because by doing so he will buy with the same positive prob- 
ability but pay a lower price. This contradicts B being an optimal strategy and 
establishes that B is nondecreasing. If B(v') = B(v) (= A) because B is not 
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strictly increasing, then any buyer with v" E (v, v') will raise his bid infinitesi- 
mally from A to A' > A to avoid the rationing that results from a tie. This proves 
that B is strictly increasing on [v, 1].9 Q.E.D. 

LEMMA 5: Response S is continuous and strictly increasing on [0, i]. 

PROOF: Any active seller will accept the highest bid she receives, provided 
it is above her dynamic opportunity cost: 

(14) S(c) = c + e-85Ws(c). 

Milgrom and Segal's Theorem 2 implies that Ws(.) is continuous and can be 
written, for any active seller type c, as 

(15) Ws(c) = Ws(c) + fPs(S(x)) dx = f Ps(S(x)) dx, 

where the second line follows from the definition of c and the continuity 
of Ws(.). Combining (14) and (15) we see that 

c 

S(c) = c +e e- Ps(S (x)) dx 

for all sellers who are active. This also implies that S(.) is continuous. There- 
fore, for almost all active sellers c E [0, _], 

(16) S'(c) = 1 - e-/uPs[S(c)] > 0 

because Ws(c) = -Ps[S(c)]. Because S(-) is continuous, it is sufficient to es- 
tablish that S(.) is strictly increasing for all active sellers c E [0, -]. Q.E.D. 

LEMMA 6: We have c < B(v) < v, S(c) = C < p, and B(v) < c. 

PROOF: Given that S is strictly increasing, S(0) = c is the lowest reservation 
price any seller ever has. A buyer with valuation v < c does not enter the mar- 
ket because he can only hope to trade by submitting a bid at or above c, i.e., 
above his valuation. In equilibrium, any buyer who enters the market must sub- 
mit a bid below his valuation and above c, because otherwise he is unable to 
recover a positive participation cost. It follows that c < B(v) < v. Similarly, 
a seller who is only willing to accept a bid at or above j3 never enters the 
market, because she is unable to recover her participation cost. This implies 

9This proof uses the same argument that Satterthwaite and Williams (1989a) used to prove 
their Theorem 2.2. 
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S(c) < p. Any active seller has acceptance strategy given by (14), so in partic- 
ular S(c) = c. 

Finally, suppose that B(v) > c. Then the buyer for whom v = v bids more 
than necessary to win the object: he can only be successful if there are no rival 
buyers, and when this is the case, bidding c is sufficient to secure acceptance of 
the bid by the seller. Q.E.D. 

All these findings are summarized as follows. In reading the theorem, recall 
that the descriptors (c, c, v, p, p) are defined in (3). 

THEOREM 7: Suppose that {B, S} is a stationary equilibrium. Then, over [v, 1] 
and [0, c], B and S are strictly increasing, and S is continuous and almost every- 
where on [0, c] has derivative 

S'(c) = 1 - e-P Ps[S(c)]. 

Finally, B and S have the properties that c < p < v, S(c) = c < p, and p 
B(v) < S(c) = c. 

The strict monotonicity of B on [v, 1] and S on [0, c] allows us to define V 
and C, their inverses over [B(v), B(1)] and [S(0), S(c)]: 

V(A) = inf{v e [0, 1]:'B(v) 
> A}, 

C(A) = inf{c e [0, 1]: S(c) > A}. 

Finally, that B(v) < S(c) is a weak inequality, not a strong inequality, makes 
possible the existence of full trade equilibria. 

3.3. Explicit Formulas for the Probabilities of Trading 
Focus on a seller of type c who in equilibrium has a positive probability of 

trade. In a given period she is matched with zero buyers with probability ITo and 
with one or more buyers with probability -ro = 1 - iro. Suppose she is matched 
and v* is the highest type buyer with whom she is matched. Because by Theo- 
rem 7 each buyer's bid function B(.) is increasing, she accepts his bid if and only 
if B(v*) > A, where A is her reservation price. The distribution from which v* 
is drawn is FB(.). For v E [v, 1], 

(17) FB(v)= - 1[F(v) 
r() ()[FB(v 

where FB(.) is the steady-state distribution of buyer types and {i0, , 72,...* * * 
are the probabilities with which each seller is matched with zero, one, two, 
or more buyers. Note that this distribution is conditional on the seller being 
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matched. Thus if a seller has reservation price A, her probability of trading in 
a given period is 

(18) ps(A) = 0ro[1 - 
FB(V(A))]. 

This formula takes into account the probability that she is not matched in the 
period. 

A similar expression obtains for pB(A), the probability that a buyer submit- 
ting bid A successfully trades in any given period. To derive this expression, 
we need a formula for 

WCok(W), 
the probability that the buyer is matched with k 

rival buyers. If TB is the mass of active buyers and Ts is the mass of active sell- 
ers, then W(k (?) TB, the mass of buyers who participate in matches with k rival 
buyers, equals k + 1 times iTk+l1() Ts, the mass of sellers matched with k + 1 
buyers: 

Wk( ) TB = (k + l)Tk+l ( )Ts. 

Solving, substituting in the formula for 7Tk+?(i), and recalling that " = TBs T 
shows that Wk(?) and 

7rk(?) 
are identical: 

(k + 1) (k + 1) -k+1 (19) 
wok() - Ek+l( )- = *((+) 

. [ [ (k + 1)!ei 
The striking implication of this, which follows from the number of buyers in a 
given meeting being Poisson, is that the distribution of bids that a buyer must 
beat is exactly the same distribution of bids that each seller receives when she 
is matched with at least one buyer.10 

Turning back to pB, a buyer who bids A and is the highest bidder has proba- 
bility Fs(C(A)) of having his bid accepted. This is just the probability that the 
seller with whom the buyer is matched will have a low enough reservation price 
so as to accept his bid. If a total of j + 1 buyers are matched with the seller with 
whom the buyer is matched, then he has j competitors and the probability that 
all j competitors will bid less than A is [FB(V(A))]j. Therefore, the probability 
that the bid A is successful in a particular period is 

(20) pB(A) = Fs(C(A)) L: w(o()[FB(V(A))]j 
j=0 

= Fs(C(A)) Yrri()[FB(V(A))]j 
j= + o ())] 

= Fs(C(A)) [ o + -oF*(V(A))]. 

1DMyerson (1998) studied games with population uncertainty and showed that the Poisson 
assumption is both necessary and sufficient for players' beliefs about the number of other players 
to be equal to the external observer's beliefs. 
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We are now in position to prove Theorem 1 on convergence and Theorem 2 
on existence. The next section proves convergence to pw, the Walrasian price, 
in two steps. Convergence to one price follows from each trader's search for 
a better price becoming cheaper as 8, the period length, becomes shorter. 
Traders who do not offer a good price to the opposite side of the market fail to 
trade and therefore revise their price, narrowing the range of prices realized in 
the market. That convergence is to pw is a consequence of supply and demand. 
Traders who enter stay in the market until they trade. If the one price to which 
the market converges is not Walrasian, then either more buyers will enter than 
sellers or more sellers will enter than buyers. Either way the market will not 
clear, traders on one side of the market will accumulate without bound, and 
the market will not be in a steady-state equilibrium. Therefore, if a sequence 
of steady-state equilibria exists as 8 -+ 0, the equilibria must converge to pw. 

Section 5 proves existence in three steps. In the first step we identify a class 
of equilibria-full trade equilibria-and show that a necessary condition for a 
full trade equilibrium to exist is that it satisfy a system of two equations that 3, 
the discount rate, and 8, the period length parameterize. In step 2 we show 
that at (/, 8) = (0, 0) a solution to these equations always exists and we apply 
the implicit function theorem to establish that a unique solution always exists 
for all (/, 8) in a neighborhood around (0, 0). Finally, in step 3 we show that 
if p is sufficiently small relative to K, the per unit time participation cost, then 
the solution to the two equation system-which exists-defines an equilibrium, 
i.e., a solution to the system is sufficient for an equilibrium to exist. Section 5 
then concludes with a discussion of two issues: why it is important that 3 be 
small relative to K and what we are able to say about the rate at which equilibria 
approach full efficiency as 8 -5 0. 

4. PROOF OF CONVERGENCE 

Theorem 1 consists of two parts: "the law of one price" part, which, given 
the characterization in Theorem 7, reduces to 

lim c = lim p8 = lim v, = Pw, 0 -*0 5--0 

and the efficiency part 

lim Wss(c) = max[0, Pw - c], lim WB8(v) = max[0, v - Pw]. 8--0 85 0 

These parts are dealt with separately in Theorems 8 and 12. All the proofs 
in this section apply to all equilibria, not only to full trade equilibria. Fig- 
ure 3 shows the structure of a non-full-trade equilibrium. The difference be- 
tween this figure and Figure 1 (a full trade equilibrium) is that the equality 
p = B(v) = S(c) = c, which defines an equilibrium to be full trade, is changed 
to the inequality p = B(v) < S(c) = c, which allows sellers' and buyers' strate- 
gies to overlap. 
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FIGURE 3.-Structure of an equilibrium that is not full trade. The figure also shows the con- 
struction of b', b", c , and c' that are used in the proof of Lemma 10. 

THEOREM 8: We have lim-0o c, = lim 0/o f, = 
lim_0o 

v5 = Pw. 

The proof of this theorem relies on three lemmas. 

LEMMA 9: We have 
lim,0o(5 

- =c) = 0. 

PROOF: Suppose not; i.e., there exists an e > 0 such that p5 - c, > e along 
a subsequence. Let 

b5 = p5 - e/2, 

v8 = sup{v: B5(v) < b}). 

Let the probability y8 be the seller's equilibrium belief that the maximum bid 
in a given period is greater than or equal to b,. If lim8,0o y8 = y > 0 along a 
subsequence, the seller for whom c8 = (c 

+ b5)/2 would prefer to enter for 
small enough 8. The reason is this. By definition, b8 - -8 > e/2 and, therefore, 
bs - c8 > e/4. Consequently, if seller c8 sets her offer to be A = be, then the 
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gain be - c8 she realizes if she trades is at least E/4 and her per period prob- 
ability of trade is ps(A) > y. Inspection of formulas (8) and (12) establishes 
that as 8 -+ 0, her discounted probability of trade goes to 1 and her discounted 
participation costs goes to 0. Therefore, her expected utility, as given by (11), 
is 

WS(b8, c8) = Ps(A)(b= - c5) - Ks(A) > - > 0 4 

as 8 -+ 0, a contradiction. 
If, on the other hand, lim50o Y~ = 0 along all subsequences, then the buyer 

for whom v = 1 would prefer a deviation to be. If he deviates, then in the limit, 
as 8 -+ 0, his probability of trading in a given period, pB(b8), approaches 1. 
This is an immediate implication of the observation that follows (19): y5 is 
not only the probability that the maximum bid a seller receives in a given pe- 
riod is greater than or equal to be, but it is also the probability that the maxi- 
mum competing bid the type 1 buyer must beat is greater than or equal to bs. 
Therefore, y6 -> 0 implies that deviating to b5 results in his discounted prob- 
ability approaching 1 and discounted participation cost approaching 0. Conse- 
quently, this buyer deviates and secures the lower price be, which completes 
the proof. Q.E.D. 

LEMMA 10: We have 
lims.o(P 

- p ) = 0. 

PROOF: The proof is by contradiction: Pick a small e, suppose pS - p5 > 
S> 0 along a subsequence, and define 

1 
(21) bs = ps - -, 3 

2 
3 

Note that b' - p > . Select a buyer and let 

as = Fs5(C5(b'5)) 

be the equilibrium probability that the seller with whom he is matched in a 
given period would accept a bid that is less than or equal to b'. Lemma 9 guar- 
antees that the seller for whom S(c) = b' exists, at least for small enough 8. 
Select a seller and let 

00 

'J'8= k[ = (o + o(b'F))]k b FO(V (b')) 
k=O 

be the equilibrium probability that, in a given period, she receives either no bid 
or the highest bid she receives is less than or equal to b'8. Observe that if' is 
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the equilibrium probability that a buyer's bid b' is maximal in a given match; 
this follows directly from formula (20) for ps(A). Given these definitions, this 
lemma's proof consists of three steps. 

STEP 1: The fraction of sellers for whom S5(c) < b' does not vanish as 
8 -* 0, i.e., 4 lims04)s 

> 0. Suppose not. Then f 0 -+ 0 along a subsequence. 
Fix this subsequence and fix some period, say period 0. Let N8 be a sequence 
of integers whose values are chosen later in the proof. Define, without loss of 
generality, the time segment Ys of length N8 periods that begins with period 0 
and ends with period N5. Define three masses of sellers: 
* Mass m+z8 is the mass of sellers who enter the market within time segment 

Y8 and for whom b~ < S,(c) < b'. 
* Mass m-8 is the mass of sellers who both enter and exit the market within 

time segment Y8 and for whom b' < S8(c) b'. 
* Mass m8 is the steady-state mass of active sellers for whom b'~ < S8(c) 

<_ 
b'. 

The assumption that 8 -+ 0 implies that m5 -- 0. We show next that m8 -+ 0 
entails c -+ b". This establishes a contradiction because Theorem 7 states that 
c8 < p and by construction p + f< bi. 

The fraction of sellers in the mass m+' that do not exit during the time seg- 
ment Y8 is 

n- n8 
+m - m5 
N5 N5 

because the surviving mass m+ - 
mu, 

of sellers who entered in time seg- 
ment Y8 cannot exceed the total, steady state of the mass mi of sellers with 
reservation prices in the interval [b', b']. Therefore, the fraction of the sellers 
in m+T who have traded within time segment Y5 is at least 

m5 (22) 1 
mN8 

In the mass m'N5, pick a seller c' who enters in period 0 and for whom 

Ss (c") = b'. 

Such a seller c' always exists because S8 is continuous (see Theorem 7) and g is 
a lower bound on the density of entering sellers. This seller's reservation price 
is as low as any other seller in ml~, and has the full time segment Y3 in which 
to consummate a trade. Her probability of trading within Y5 is therefore as 
high as any other seller in m',,. Let r8 be her probability of trading within the 
time segment Y5. It is, therefore, at least as great as the average probability of 
trading across all sellers in m,: 

(23) r (23) r8 > 1- . 
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Now, because the slope of Ss is at most 1 (see the formula in Theorem 7), it 
follows that 

(24) m > -gSNs, N- 3 

because m+, is minimized when the slope of S5 is the largest (i.e., equal to 1) 
and the density gs is minimal. Substituting this lower bound on m', into (23) 
gives 

m8 raIl- 
3gsNs 

For seller c", her discounted probability of trading Ps8(b") from setting reser- 
vation price bM is bounded from below by 

(25) 
Psa(bI)>e 

e-N"(1 85 

- m . 3g-N 

The right-hand side understates the discounted probability of trade because, 
literally, the lower bound is the discounted probability that trader ci' waits 
the full Ns periods before attempting to trade, having only probability 1 - 

ms/(3gSN5) 
of succeeding in that period, and then never trying again. 

Set the period length to be 

N =min k:kisinteger, 
k>" 

Q 
Substitution of this choice into (25) and taking the limit as 8 -- 0 shows that the 
discounted probability of seller c"' trading approaches 1 from below because 
m' -+ 0: 

lim 
Psa (Sa(c)) 

> 
lim 

exp(--/ 
)1 

_-- 
O - 

1. 

- 1. 

Recall from Theorem 7 that, for almost all c E [0, c), 

S'(c) = 1 - e-"Psa[S(c)]. 

Because Ps8(S8(c)) > Psa(b"') for c < c' and S5 is increasing on [0, c), it follows 
that, for all seller types c e [0, c'], Psa[Sa(c)] -- 1 and 

lim S, (c) = 0. 
6--+0 
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Consequently, because S8 is continuous, 

c, = S(0) -+ b'. 

This is in contradiction to c, < p < b" - e/3. Therefore, it cannot be that 

4k 
- 

0. 

STEP 2: If the ratio of buyers to sellers (8 is bounded away from 0, then the 
probability q8 that the highest bid in a given meeting is less than b' is also 
bounded away from 0. Proof of this step stands alone and is not based on the 
result in Step 1 of this proof. 

Formally, if lim5-o,0 > 0, then q - 
lim8_o0 

qfj > 0. Suppose not. Then q8 - 

0 and s8 --+ 
> 0 along a subsequence. Fix this subsequence and recall that by 

construction 

(26) b5 > p8 + ?. 3 
First, we show that the seller with cost c" such that S(c') = b',' prefers to enter. 
Because (8 -+ " and qWj -+ 0, for all 8 sufficiently small, the probability that 
he meets a buyer for whom B(v) > b = b" + /3 is at least '(1 - e-). This is 
because, with qj 8 -* 0, (i) almost every bid she receives is greater than b' and 
(ii) her probability of getting at least one bid is approaching 1 - e--. Therefore, 
as 8 -+ 0, her discounted probability of trading with a buyer for whom B5(v) > 
b' approaches 1 even as her discounted participation costs, given by formula 
(10), approach 0. Consequently, the profit of the c' seller, in the limit as 8 -- 0, 
is at least e/3, and she will choose to enter. 

Second, because she chooses to enter, it must be that c' < c8. Therefore, the 
slope of S for c E [0, c"') satisfies 

S'(c) = 1 - e-~8 PsA(c) -+ 0, 

because Pss(S6(c)) > Ps8(S6(c')) and Ps8(S,(c')) -- 1. Therefore c8 -+ bi, a 
contradiction of (26) and Theorem 7's requirement that c8 < p. 

STEP 3: For small enough 8, a buyer for whom v = 1 prefers to deviate to 
bidding b' instead of pR. There are two cases to consider. 

CASE 
1-lim-,oa 

> 0: We show, using both Steps 1 and 2 of this proof, that 
bidding p3 cannot be equilibrium behavior for a type 1 buyer. Recall that 05 
is the probability that a seller will accept a bid less than b' and that, accord- 
ing to Step 1, = 

lim_,0 
4'8 > 0. Additionally, recall that q/1 is the probability 

that the maximal rival bid a buyer faces in a given period is no greater than b' 
and that, according to Step 2, lims,o 

0q8 
= qi > 0. For small enough 8 > 0, this 

second probability is bounded from below by (1/2)qi. It follows that, for small 
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enough 8, the buyer who bids b' (i) wins over all his rival buyers with probabil- 
ity greater than (1/2) / 

and (ii) has his bid accepted by the seller with probabil- 
ity greater than (1/2) 4. Therefore, as 8 -5 0, the buyer who bids b' trades with 
a discounted probability approaching 1 and a discounted participation cost ap- 
proaching 0. Consequently, deviating to b' gives him a profit of at least 1 - b', 
which is greater than 1 - p5, the profit he would make with his equilibrium bid 
B(1) = p5. Therefore, deviation to b', is profitable for him. 

CASE 2-lim&so, 0 = 0: Fix a subsequence such that S, -- 0. The proof of 
this case relies only on the result in Step 1 of this proof. The probability of 
meeting no rival buyers in a given period is e- and, because (5 -+ 0, this 
probability is at least 1/2 for sufficiently small 8. In any given period, for a 
type 1 buyer and for all small 8, (i) the probability of meeting no rivals is at least 
1/2 and (ii) the probability of meeting a seller who would accept the bid b' is 
at least (1/2)4. It follows that as 8 -- 0, his discounted probability of trading 
approaches 1 and his discounted participation cost approaches 0. Therefore, 
deviating to b' gives him a profit of at least 1 - b's > 1 - p5, which proves that 
a deviation to b's is profitable for him. 

Step 3 completes the proof of the lemma because it contradicts the hypoth- 
esis that lima8o(ps - p ) = e > 0. Q.E.D. 

LEMMA 11: We have 
lim_,0o(v 

- p5) = 0. 

PROOF: Suppose not. Recall that B(v,) - p5 and that Theorem 7 states that 

v, > p8. Pick a subsequence such that v, - pa > 7 
> 0 along it. Define ?s = 

1 (P + ?Vs) and observe that 68 - p > rq/2 and 8 < 
_v. 

The latter inequality 
implies that a type ,a buyer does not enter the market because his expected 
utility is nonpositive. However, suppose to the contrary that a type g, buyer 
enters and bids p8. Bidding p8 guarantees that he wins the auction in whatever 
match he finds himself, i.e., PBR(P8) = 1. Therefore, in the first period after he 
enters he earns profit of 

P5 P - K5 
- 8 - P +P -P5 - K5 

> n+P 
-_53- 

K8 2 

2 

because Lemma 10 states that, as 8 -+ 0, 135 - p -+ 0. This contradicts the 
equilibrium decision of the type ?8 buyer not to enter. Q.E.D. 
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PROOF OF THEOREM 8: Consider any sequence of equilibria S -- 0. The 
descriptors -5 and v8 converge because 

(27) lim(p3a - va) = lim(f3a - v.) - 

lim(p_ 
- vS) 

= lim(ps - p ) 

= 0, 

where limaso(p, - v8) = 0 (from Lemma 11) implies the first equality and 

lim80o(/8 
- p- ) = 0 (from Lemma 10) implies the third equality. Theorem 7 

establishes that c e [pe , 1p); therefore, Lemma 10 implies 

(28) lim(38s - ) = 0. 8-*0 

Pick a convergent subsequence of (v8, pf, cs, p ) and denote its limit as 
(P*, P*, P*, P*). 

Traders who choose to become active in the market exit only by trading. 
Therefore, in the steady state the mass of sellers entering each period must 
equal the mass of buyers entering each period: 

(29) Gs(cs) = aGB(v,). 

Taking the limit in (29) along the convergent subsequence as 8 -+ 0, we get 

Gs(p) = aGB(p,). 
This is just Equation (1) that defines the Walrasian price; therefore, p, = pw. 
Because pw is the common limit of all convergent subsequences, it follows that 
the original sequence 

(_v8 ,58, 
8, P,) converges to the same limit: 

(30) lim p = lim p = lim c8 = lim v= pw. 
- 

80 --0-58 8-0 8--0 

All that remains is to show that c. also converges to pw. The type c- seller 
who is on the margin between participating and not participating must in ex- 
pectation be just recovering his participation cost each period. Recall that 
S8(c~) = cf. Because the price this seller receives is no more than the highest 
bid, pS, it follows that 

ps8[SSG(c5)1](p - c8) > KS. 

Therefore, 

> --*-A>00 
5 P5 - C8 
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by (28). The discounted probability of trade may be written as 

pss[ S(ce)] (31) PsP[S[(cS)] = 
1 - e-05 + e-Paps[Sa(cA)] 

1 
1-e-30 /ps[S8(Ca)] + e-,6 85'8 

It follows that 
lim5_oPs[Sa(c5)] 

= 1 because limas0((1 - e-)/8) - 1= 3 and 

lims__o(ps8[S5(c5)]/8) 
= oo. Furthermore, for all c e [0, c5], 

(32) limPsa[S,(c5)]= 1 8-+0 

because 
Psa[Sa(')] 

is decreasing. Therefore, 

S'(c) = 1- e- 1 Psa(S(c)), 

the slope of S, on [0, c'6], converges to 0. Together with the continuity of S6 this 
implies that c. -- ca, which completes the proof. Q.E.D. 

Next we prove the second part of Theorem 1. 

THEOREM 12: We have 
lima_+o 

Wsa(c) = max[0, pw - c] and limas0 WBs(v) = 
max[0, v - pw]. 

PROOF: Equation (32) establishes that 
limao0Psa[Sa(c5)]-= 1, 

for all c E 
[0, cl]. The same argument, slightly adapted, shows that, for all v E [v8, 1], 
limaso PB8[B8(v)] = 1. Thus the buyer for whom v = v, must just recover its 
participation cost each period: 

PB8[Bs(v,)](1, - B5(v,)) = 
PBs(Ps)(V,5 

- p) = K5. 

Therefore, 

PBa(p ) K 
--+00 s-- --80 S _va-p 

by Lemma 11 and, exactly as with (31), 

limPB(p )lim PB(P) =1. 
8-+o -8- e8o 1 - e-8 + e-38pBa(p ) 

Because PBa(') is increasing, this establishes that limas,oPBa[Ba(v.)] = 1 for all 
v5 E [v8, 1]. 
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The envelope theorem (see (13) and (15)) implies that 

Ws(c) = fcPs[Sa(x)]dx, 

WB5(v) = PB5[BS(x)]dx. 
-5 

Passing to the limit as 8 -+ 0 gives limo0 Ws8(c) = max[0, Pw - c] and 
lims,0 WsB(v) = max[0, v - pw] because c- -- pw and v. - pw. Q.E.D. 

5. EXISTENCE OF FULL TRADE EQUILIBRIA 

Recall that Theorem 7 shows that every equilibrium must satisfy B(v) < 
S(c). The intuition for this is that the type v buyer can only trade if there is 
no rival buyer. Consequently, he should certainly not bid more than S(c), the 
lowest bid that every seller accepts. In a full trade equilibrium, B(v) = S(c) 
and the type c seller, who is the highest cost active seller, always trades if she 
is matched with at least one buyer, even if he is the lowest value active buyer. 
This, of course, means that any seller with cost less than c also trades if she is 
matched and that a buyer fails to trade only because he is beaten in the bidding 
by another buyer. In this section we characterize these equilibria and, given 
K > 0, prove their existence for each sufficiently small pair of nonnegative 3 
and positive 8. Specifically, Lemma 13 proves that, given K > 0 and P > 0, 
then for each sufficiently small P and 8 the vector of equilibrium descriptors 
(C,, 

_v8, 
J ) exists and is unique. Theorem 14 then shows that, given K > 0, there 

is a neighborhood X of (0, 0) such that if (P3, 8) E X, then a unique full trade 
equilibrium exists that the vector (c,, v, , ) characterizes. Theorem 2 then 
follows immediately as a corollary. 

5.1. Preliminaries 

Before introducing the equations that determine (c, v, ), we derive sellers' 
and buyers' probabilities of trade as a function of their types c and v and the 
buyer-seller ratio ?. As a consequence of the equilibrium being full trade, buy- 
ers' trade probabilities are independent of sellers' equilibrium strategy S. That 
the sellers' strategy does not feed back and affect the buyers' trade probabil- 
ities and strategy implies that the market fundamentals-Gs, GB, a, K, 3, and 
8-fully determine the equilibrium. This fact drives both the uniqueness and 
the existence results of this section. 

Given that the market is in a steady state, within every period the cohort of 
buyers who have the highest valuations in their matches and therefore trade is 
replaced by an entering cohort of equal size and composition. Therefore, FB, 
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the distribution function of the maximal valuation within a match, is equal to 
the distribution of v in the entering cohort conditional on v > v: 

GB(v) - GB(v) (33) FB*(v) = 
1 - 

Gs(_V) 
Let IB(v) be the equilibrium probability that a type v buyer trades in any 

given period. As reference back to (20) and its derivation explains, it is equal 
to the probability that he bids against no rival buyers (wo = e-?) plus the com- 
plementary probability (Woo = 1 - e- ) times the probability that the maximal 
value among the rival buyers in his match is no greater than v": 

(34) PB(v) = e- + (1 - e-)F;(v). 

The discounted equilibrium trading probability for a type v buyer is, therefore, 

(35) PB(v) = 1 - e-s + e-C PB (v) 

The carets (hats) on pB(.) and PB(.) emphasize that these equilibrium proba- 
bilities are functions of the buyer's value v, not of his bid B(v). 

With this notation in place, we can introduce the equations that determine 
(c, v, 

s) 
in a full trade equilibrium. First, because every meeting results in a 

trade, the mass of entering buyers must equal the mass of entering sellers in 
the steady state: 

(36) Gs(c) = a[1 - GB(v)] 

= aGB(V). 

Second, the buyer for whom v = v must be indifferent between being active 
and staying out of the market. The type v buyer only trades in a period when 
there are no rival buyers; his probability of trading is wo = e- . Because in a full 
trade equilibrium B(v) = S(c) and Theorem 7 states that S(c) = c, indifference 
necessarily implies that his expected gains from trade in any period, (v - c)e-? 
equals his per period participation cost: 

(37) (v - 
c)e-- 

= K6. 

11Formula (20), pB(A) = Fs(C(A))[Lro + iroF*(V(A))], illustrates why the full trade case is 
different than the general case. In the full trade case the factor Fs(C(A)) is degenerate: for all 
A E [p, p], Fs(C(A)) = 1. As a consequence the seller's inverse strategy, C(A) does not affect 
PB(-). In the general case, an interval [p, A ] C [p, p] may exist such that, for all A E [p,A ], 
Fs(C(A)) < 1 and C(A) does affect 

pB('). 
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Third, parallel logic applies to any seller for whom c = c. This seller always 
trades in any period in which he is matched with at least one buyer; the prob- 
ability of this event is 1 - To = 

-i= 
= 1 - e-c. Denote the expected price that 

any seller receives as p. Note that this expected price is not a function of the 
sellers' type c; it is the same for all active sellers in a full trade equilibrium. 
Then, because the c seller is indifferent between trading and staying out of the 
market, it must be that 

(38) (p - c)(l - e) Ks. 

To find the price p, we use the envelope theorem to solve for the bidding 
strategies of the active buyers (i.e., those buyers for whom v > v) as 

(39) WB(v) = (v - B(v))PB(v) - Ko(v) 

= P (x)dx, 

where PB(v) is the type v buyer's discounted probability of trading and 

Ko(v) = 1 - e-,8 + e-8psB(v) 

is his discounted participation cost. Solving Equation (39) for B(v) gives 

K8 1 fV 
(40) B(v)=v- P 

PB() 
(x) dx. 

PB(V) PB) ( 

Observe that this formula calculates B(v) directly; it is not a fixed point condi- 
tion. The expected price p that a seller receives is the expected value of B(v) 
for that buyer who has the highest valuation, 

(41) p - B(v) dF(v (v) 1 - G(v) B(v) dGB(v), 

where the second equality follows from (33). 
Equations (36)-(38) form a system of three equations in the three unknowns 

(c, v, 
s) 

that, for given K, /3, and 8, must hold in any full trade equilibrium. 
In Theorem 14, which follows, we prove that the converse claim is also true: 
given K > 0, if p is nonnegative, 8 is positive, and they are in a sufficiently 
small neighborhood of (0, 0), then a unique full trade equilibrium exists that 
corresponds to a solution (c, v, ) of the system of equations. The three char- 
acterizing equations (36)-(38) therefore identify a full trade equilibrium. 
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It is useful to reduce (36)-(38) to two equations. Substitute 

(42) c =v- KWe 

from (38) into (36) to obtain 

(43) Gs(v - KWe ) - a(1 - GB(v)) = 0. 

This eliminates c. Equation (36) can be rewritten as 

K8 
1- e-e 

K8 = V - K8eW + 
- 1 - e- 

Given K, the new, two equation system in the two variables (v, ) and the two 
parameters (/3, 8) is then 

(44) Gs(v - KWSe) - a(1 - GB()) = 0, 

e( - 2 (45) p - + K8- =- 0, 1- e-? 
where Equations (41), (40), and (35) together imply that p is a function of P 
and 8. 

5.2. Proof of Theorem 2 

The method of proof we use has five steps. First, we fix K > 0 and tediously 
substitute (41) into the system (44)-(45) to eliminate p. Second, we change 
the domain of the system from the economically meaningful set (v, /3, , 8) e 
D = (0, 1) x (0, oo) x [0, 1) x (0, 0o) to the mathematically more convenient 
set D1 = (0, 1) x (0, 2) x (-0.1, 1) x (-0.1, 1). Third, we prove that at 8 = 0, 
the system has a unique solution, (v, ) = (pw, S*), where ?* = 1.14619 is the 
unique positive solution of the equation e? - " - 2 = 0. Fourth, we apply the 
implicit function theorem in a neighborhood of (v, /, /, 8) = (pw, I*, 0, 0) to 
establish the existence of a unique, differentiable solution (v(8), ((8)) for the 
system of equations. Fifth, by construction, we show that if both /3 and 8 are 
sufficiently small, then the solution (v(8), ((8)) characterizes the unique, full 
trade equilibrium of the market. Lemma 13 accomplishes the first four steps 
and Theorem 14 accomplishes the last step. 

LEMMA 13: Given K > 0, a neighborhood X of the point (0, O0) exists such 
that the system (36)-(38) has a unique, differentiable solution (E(P, 8), v(P, 8), 
/(P, 8)) for all (, 8) E X. At 8 = 0, v(/, 0) = pw and t(0, 0) = ?* = 1.14619, 

where ?* is the unique positive solution of the equation e? - ? - 2 = 0. 
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PROOF: By (41), 

(46) p-v= 1- 
GB() 

(B(v) - v) dGB(v) 1 - GB (-V) f 
and, by (40), 

B(v)-v=v-v- V P(X) dx- 
K 

SPB (V) PB(V) 

v 
B-X) dx -( K) . PB(V) P^B(V) 

Algebra shows that 

PB() 1 - e-(v) - B(x) (47) 1 - = p8 
PB(V) 36 PB(V)(1 - e-8 +e-pgB(X)) 

Substituting this into (40) gives 

B(v) - v 

8( 1- e J PB(v) 
- 
PB(X) dx K) p 

PB()(1 - e- + e-B(X)) 

Inserting this expression for B(v) - v into (46) and substituting the resulting 
expression for p - v into (45) gives 

(48) 8L(v, , P3, 8) = 0, 

where 

(49) L(v, , P/, 8) 1 ' p 1 - e-,8 GB1 - G v K K 
x fV B(V) 

- ( ?B(X) dxdGB(v) S B( p)(1) - e-ps + e-05 B(x ) 

1 
l 1 

1- 
GB() PB(V) dGB(V) 

e? - 2 1 
-2. 1 - e-? 
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The second term of L can be written as 

1- GB() v PB() 

1 
- GB() - GB(V)dGB (v) 1 - GB(V) , e-? + (1- e-c) GB1-G(V) 
1 1 

- log 1- e-e e-? 

1-e- 

Substituting this into (49) results in 

L(v, ', 
,, 

6) 

1 fl 
P 1 - e- * 

1 - GB(v) , K 8 

x )B(V) 
- e B(X) )dx dGB(v) 

S pB(v ) (1 
- e-P + e-Pa8B(X )) 

e5 - J - 2 
+- - 

1-e- 
* 

Simplifying further, L(v, , /, 8) becomes 

(50) L(v, ?, 8, ,) 
1 1S 1 - e-05 

(1 - GB(v))2 I K /6 

"V (1 - e-)(GB(v) - GB(x)) , B(V)(1 - e e-SB(X)) 

e;- -2 
+ 1-s 

1 - e-? 

Given this work, the system (44)-(45) is, for 8 > 0, equivalent to the system 

(51) Gs(v (3, 8) - KeC('P") - a(1 - GB(V(/3, 8))) = 0, 

(52) L(v(/3, 8), (/3P, 8), /3, ) = 0, 

where we index v and " with pand 8 to indicate that we solve this system for 
them as functions of p and 8. Note that we have divided the second equation 
through by 8; this is essential to ensure a nonzero Jacobian. 
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We apply the implicit function theorem to this system in a neighborhood 
of the point (v, S, 3, 8) = (pw, ?*, 0, 0). To do so the system must be contin- 
uously differentiable in a neighborhood of (pw, ?*, 0, 0). Therefore, change 
the domain of the system from D = (0, 1) x (0, 00) x [0, 1) x (0, oc) to 

D1 
= (0, 1) x (0, 2) x (-0.1, 1) x (-0.1, 1). Equation (51) is obviously contin- 

uously differentiable on D1. To see that this is also so for (52), recall formula 
(34) for pB and observe that AB(V), PB(X), and (1 - e-8)/1,3 are continuously 
differentiable functions of v, ?, P, and 8 on D1.12 The function L, as a com- 
position of these functions, is continuously differentiable on D1 provided the 
factor (1 - e-O + e-1P^B(X)) in the denominator of the inner integral is al- 
ways positive. This in fact is the case because iB(X) is increasing for x > v and 

PB(v) = oo = e-? (see (33) and (34)). Therefore 

1- e-, + e-C'P B(X) > 1 - e-0 + e- e-c 

= e-0 (eP - 1+ e-c). 

This last expression is positive if ei8 - 1 + e-? > 0 or, equivalently, whenever 

(53) P38 > In(1 - e-s). 

Inspection establishes that all (v, S, 3, 8) e D1 satisfy (53) because 
sup E(0,2) ln(1 - e-) --0.145. Therefore, L(.) is continuously differentiable 
on D1. Finally, also note that within its interior D1 includes all points in 

{(_v, 
, 13, 8) e D : 13 = 0 and 8 = 0}. 

At (p, 8) = (0, 0), L(v, , 0, 0) takes the simple form 

L(v, s, 0, 0) 1 -e-e 

This is a function that increases in <, 

d e - - 2 e (e+ e2 - 3ec + 3) d- 0, 
dr 1- e- (1 - e-)2 

because e2( - 3ec + 3 = (e - 1)2 + 3 - ()2 > 0. Therefore, 

(L(v, S, 0, 0) 
(54) 

d 
0> 0. d? 

We now claim that (v, ?) = (pw, ?*) is the unique solution to the system 
(51)-(52) at (P3, 8) = (0, 0). This is seen in two steps. First, if 8 = 0, (51) re- 
duces to Gs(v(O)) - a(1 - GB(v(0))) = 0, which is just (1) defining pw, the 

12The expression (1 - e-')/3P8 is indeterminate at 8 = 0, but selecting 
lim__o(1 

- e-p3)/l 
to be its value at that point makes it continuous and differentiable over all of D1. 
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Walrasian price. Therefore, at (/3, 8)= (0, 0), pw is the unique solution to 
(51), the system's first equation. Second, inspection shows that the equation 
L(pw, , 0, 0) = 0 reduces to e? - 

s 
- 2 = 0 at (/3, 8) = (0, 0); its unique, pos- 

itive solution is ( = ?* = 1.14619. Thus, as claimed, (v, ) = (pw, s*) is the 
unique solution to the system at (/3, 8) = (0, 0). The Jacobian J of the system (51)-(52) at (v, 

s, /3, 8) = (pw, s*, 
0, 0) is not 

zero, 

_ 
gs(pw) + agB(pw) 0 

S=dL(pw, *,0,O) 

dL(pw, [*, 0) 
= (gs(pw) + agB(pw)) > 0, d? 

where * denotes some expression and the last line follows from inequality (54). 
Consequently, the implicit function theorem applies: in some neighborhood X 
of (/, 8) = (0, 0) a unique solution (v(/3, 8), (/3P, 8)) to the system (44)-(45) 
exists and is differentiable in /3 and 8. The remaining function c(8) then is 
recovered from formula (42). Q.E.D. 

It remains to show that the equilibrium's characterizing equations are also 
sufficient; this is accomplished in Theorem 14. We have already shown that 
(36)-(38) must hold in any full trade equilibrium, and that there exists a 
unique solution to these equations when p and 8 are sufficiently small. We 
start with the solution values (c(/3, 8), v(/3, 8), (/P, 8)), construct the unique 
steady-state densities fB and fs and strategies B and S, compute the masses TB 
and Ts that these densities and strategies imply, and check that the ratio of 
these masses equals the solution value 

s. 
The key insight to our construction is 

the observation that the strategy for buyers can be constructed separately from 
the strategy for sellers; the solution (c(/3, 8), v(/3, 8), s(/3, 

8)) is a sufficient 
link between the two. 

A difficulty in the construction of the buyers' strategy B is that the lowest 
active buyer type v(/, 8) (and hence also the neighboring types) may have an 
incentive to deviate, by lowering his bid into the support [c, -) of the distrib- 
ution of the sellers' "offers."13 We show that such a deviation is not profitable 
if p is sufficiently small. 

THEOREM 14: Given K > 0, a neighborhood X of (0, 0) exists such that, for all 
pairs of nonnegative p and positive 8 in X, a unique full trade equilibrium exists. 

PROOF: Consider sellers first. We already know the marginal participation 
type, 5, among sellers; it is a component of (c, v, ). A seller trades in any 

13We are grateful to a referee for drawing our attention to the possibility of such a deviation, 
thereby discovering a flaw in the previous version's proof. 
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period in which she is matched with at least one buyer; this probability is 
Iro = 1 - ro0 

= 1 - e-? and is independent of her type. Using formula (7), her 
discounted probability of trade is 

1-e- ) (55) Ps1= 1 - e-ps + e- *(1 - e- ) 
For active sellers-those with costs c < --formula (15) gives their continua- 
tion values 

(56) Ws ( c) Ps dx 

= Ps(c - C) 

and formula (14) gives their equilibrium strategies 

(57) S(c) = c + e-385Ws(c) 

= c + e-Ps8s(c - c). 

Note that this is a linear function of c with slope 1 - e-'Ps. Sellers for whom 
c > c best respond by not entering. 

To construct the unique, steady-state distribution of seller types, Fs, observe 
that the seller's best-response strategy S is increasing on [0, c] and satisfies 
S(c) = c. Because all active sellers trade with the same probability in any pe- 
riod, the distribution of their types in the market Fs is just the distribution of 
the entering cohort conditional on c < c: 

Gs(c) (58) Fs(c) = 
Gs(c) 

To complete the construction of the seller's part of equilibrium, we must find 
the steady-state mass of active sellers Ts. Mass balance holds every period in a 
steady state, therefore Ts(1 - e-?) -= Gs(c) and, solving, 

SGs(c) 
(59) Ts - -. 1 - e-? 

Turning to the buyers, our first step is to show that buyers' unique, symmetric, 
mutual best-response strategy for v v is in fact given by (40), 

K8 1 fvA 
(60) B(v)=v- v P B(x) dx 

PB (V) PB(v) 
where v denotes v(f3, 8), a component of the characterizing equations' solution 
of the (36)-(38). For v < v, the best response is not to enter. Observe that 



192 M. SATTERTHWAITE AND A. SHNEYEROV 

the formula implies, as it should, that B(.) is an increasing function and that 
B(v) = c. 

Standard auction-theoretic arguments (e.g., the constraint simplification 
theorem in Milgrom (2004, p. 105)) imply that the envelope condition (39) 
is sufficient to rule out any deviation from B(v) to a bid A > c. For devia- 
tions from B(v) downward into the region [c, c), the restriction that (/3, 8) is 
contained in a sufficiently small neighborhood of 0 is sufficient. To see this, fix 
K > 0, restrict (/, 8) E [0, 1] x (0, In2), and observe that this restriction implies 
e- e (1, 1). Recall that the buyer's payoff function (eq. (9)) may be written 
as WB8(A, v) = (v - A)PB(A) - KB(A), where KB(A) is his expected discounted 
participation costs from following the stationary strategy of bidding A. Because 
WB"(A, v) is continuous at A = c, a sufficient condition for ruling out profitable 
downward deviations is, for all A and v such that v>c > A,14 

( W6"1(A, v) (61) A = (v - A)PB(A) - PB(A) - K'(A) > 0. dA 
This condition is met if -KB(A) > 1, because (v - A) > 0, PB(A) > 0, 
PB(A) < 1, and KB(A) < 0. 

Differentiate -KB(A) as 

e-f3 
(62) 

-KB(A)- 
K8() (1 - e-0 +e- $ pB(A))2 P 
1 

-2 

because e-Pa e [1, 1], PB(A) E [0, 1], and, consequently, e-,8/(1 - e-'O + 

e-8psB(A))2 > . The probability pB(A) of a seller successfully trading is given 
by formula (20), 

pB(A) = Fs(C(A))[rro + -roF*(V(A))] = rToFs(C(A)), 
where the second equality follows from the fact that, for deviations A e [c, c), 
F*(V(A)) = 0 because the deviating buyer's bid A loses whenever he faces a 
rival buyer. 

Differentiation gives 

1 - e-8 + e-8(1 - e-) 
(63) pl(A) = e- fs(C(A)) 1 - e-01 
where e-? = 7r0, fs(C(A)) is the density of sellers' types at C(A) and 

1 - e-,8 + e-0(1 - e-?) 1 = 
C'(A)-= 1 - e- ^ S'(C(A)) 

14However, W"B(A, v) is not a differentiable function at A = c. 
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from (57). Recall the mathematical inequality that, for all / and 8, 38 > 1 - 
e-,". Also recall that g > 0 bounds the density gs from below on [0, 1], which 
implies that fs(c) = gs(c)/Gs(-) > g. Therefore, again using e-, E [, 1], 

(1 - e-) 
ps(,) > e- /g 

Then 

1 
-KB(A) > -e-eg(1 - e-) 

2- P 

> ge-*(1- e-) 

> 1, 

where the first inequality follows from substituting the bound for p'(A) into 
(62), the second inequality follows from writing the result from Lemma 13 as 
(/3P, 6) = 7* + o(J11((, 8)11) for some neighborhood of (0, 0), and the third in- 

equality follows from choosing P sufficiently small relative to K. This shows 
that, for (/3, 6) in a sufficiently small neighborhood of (0, 0) that is contained 
in [0, 1] x (0, ln2), Wa(A, v) > 0 for A e (c, -) and, therefore, no deviation to 
A < e is profitable for active buyers. Buyers' unique symmetric mutual best- 
response strategy for v > v is therefore given by (40). For v < v, the best re- 
sponse is not to enter. Observe that the formula implies, as it should, that B is 
an increasing function and that B(v) = c. 

The steady-state distribution, F*, of the maximal rival buyer's type is given 
by formula (33). The distribution FE is uniquely recoverable from FB, the distri- 
bution of the maximal value. Equations (34) and (33) imply that, in the steady 
state, 

GB(v) - GB(v) (64) pB(v) 
= e-? + (1- e- ) 

1 - 
Gs(_) 

On the other hand, direct computation shows that 

k=O 

= 
e-l-FBl00 

e-crFB() [ FB(v)]k 
k=O 

e- [1-FB(v)] Se 
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Equating the right-hand sides of (64) and (65) and then solving, we obtain the 
unique steady-state distribution FB that corresponds to ? and v in the charac- 
terizing equations' solution: 

1 GB(v) - GB(v)1 
(66) FB(v) = 1 + log e-? + (1 - 

e-1) 
GB(V 

) 
" I 

- 
G1- GB 

To complete the construction of the buyer's part of equilibrium, we must 
compute TB, the steady-state mass of buyers. Mass balance of buyers implies 

(67) TBFB(V)PIB(V) = a8gB(v). 

Substitution of (64) and the derivative of (66) into (67) and solving gives the 
formula 

a(1 - GB(v)) a5GB(v) 
(68) TB=- - =S 1 -e-e 1- e- 

A review of this construction shows that strategy B, the distribution FB, and the 
mass TB depend only on the fundamentals GB, a, 8, and the solution (c, v, ?) 
to the characterizing equations, but not the sellers' strategy S. This insulation 
of the buyers' optimal actions from the sellers' actions is, we again emphasize, 
the key insight behind this construction and the proof's overall design. 

We need to check that, in addition to being mutual best responses and in- 
ducing their own steady-state distributions FB and Fs, the strategies result in 
steady-state masses of buyers and sellers that have the required ratio " that 
was computed as a component of the solution to the characterizing equations. 
This is confirmed by dividing (68) by (59), 

TB a(1 - GB(V)) aGB(V) 
Ts Gs(c) Gs(c) 

where the last line follows from market clearing, (36). Q.E.D. 

5.3. Discussion 

Lemma 13, Theorem 14, and their proofs raise two issues. First, even if 6 
is small, why does /3 have to be small relative to K to insure that a solution 
(c, v, ?) to the equations (36)-(38) in fact characterizes a full trade equilib- 
rium. Second, our theorems do not discuss the rate at which these markets 
converge to full efficiency as 6 approaches zero. Why not? 

The reason why an active, type v buyer might consider deviating from the 
bid B(v) downward with a bid A into the interval [c, 5) is that the better price, 
if he successfully trades, more than offsets his lower per period probability of 
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trading and increased participation costs. It is immediately clear why, if 3 is 
small relative to K, such a deviation is unprofitable. Consider the extreme case 
of infinitesimal discounting: /3 is arbitrarily small. In this case, the equilibrium 
strategy of sellers (see (14)) is essentially flat: S(c) = - and S(0) = c = c - 
e for some infinitesimal e > 0. Therefore, deviating into [c, c) results in an 
infinitesimal gain in price at the cost of a noninfinitesimal reduction in the per 
period probability of trade-a bad deal and therefore not an equilibrium deal. 

If p is large, the logic reverses: deviating into [c, c) results in an improved 
expected discounted margin that more than offsets the increase in expected 
discounted participation costs. To illustrate, take as a baseline the second of 
the two full trade equilibria that we computed in Section 2 (see Figure 2). 
This equilibrium, for which /3 = 1 and 8 = 0.02, has C -= 0.470, v = 0.530, and 

= - 1.103 as the solution to its characterizing equations. A check that this is, in 
fact, an equilibrium is to calculate that if the type v = 0.530 buyer deviates from 
his equilibrium bid B(v) = 0.470 to a bid of A = 0.465 e [c, c) = [0.456, 0.470), 
then the change in his payoff is negative. Doing so causes his per period prob- 
ability of trade PB to decrease by one-third from 0.33 to 0.22, his discounted 
probability of trade PB to decreases from 0.96 to 0.93, his margin (v - A) to in- 
crease from 0.060 to 0.065, his expected discounted margin PB(A)(v - A) to in- 
crease from 0.058 to 0.061, and his discounted expected participation costs KB 
to increase from 0.058 to 0.087. Overall the 0.029 increase in participation costs 
overwhelms the 0.003 increase in the expected discounted margin, so the net 
effect of the deviation is negative-as it must be in equilibrium. 

Alter the baseline case by increasing /3 from 1 to 10 while keeping 8 fixed 
at 0.02. Solving the characteristic equations for this modified situation yields 
c = 0.476, v = 0.524, and ' = 0.879. Construct the bidding function B(.) and 
the offer function S(.) that are associated with this vector of descriptors using 
(60) and (57). Does this (S, B) constitute an equilibrium? That it is not may 
be seen by checking if the type v = 0.524 buyer can profit by deviating from 
the prescribed bid B(v) = 0.476 to a bid A = 0.430 e [c, c) = [0.345, 0.476). 
Doing so decreases his per period probability of trade PB by one-third from 
0.42 to 0.27, decreases his discounted probability of trade PB from 0.80 to 0.67, 
increases his margin (v - A) from 0.048 to 0.094, increases his expected dis- 
counted margin PB(A)(v - A) from 0.038 to 0.063, and increases his discounted 
expected participation costs Ks from 0.038 to 0.050. Overall the 0.012 increase 
in participation costs does not offset 0.025 increase in the expected discounted 
margin, so the net effect of the deviation is positive. Thus (S, B) is not an equi- 
librium. 

Inspection of these calculations makes clear the effect of an increase in /3. 
In both the /3 =1 case and the /3 = 10 case the type v buyer deviates down 
into the interval [c, c) so as to decrease his per period probability of trade 
PB by one-third. In the /3 = 1 case this causes his expected discounted margin 
PB(A)(v - A) to increase only 5%, while in the /3 = 10 case this causes his 
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expected discounted margin to increase fully 66%. This dramatic difference 
follows directly from formula (57) for the full trade offer function, 

S(c) = c + e- Ps(- c), 

which implies that the slope of S(.) is quite flat for /3 = 1 but pretty steep for 
/3 = 10. Offsetting the change in expected discounted margin is the increase in 
expected discounted participation costs. This increase results from the lower 
per period trading probability pB, causing the type v buyer to wait in expec- 
tation longer before trading. However, in both cases the percentage increases 
are 53%: the deviation causes his expected wait to increase from 3.0 periods 
to 4.6 in the P = 1 case and from 2.4 to 3.7 periods in the /3 = 10 case. There- 
fore, to summarize, increasing 13 causes nonexistence of full trade equilibria 
because for the type v buyer it greatly increases the elasticity of PB(A)(v - A) 
with respect to pB(A), but leaves the elasticity of KB With respect to pB(A) un- 
changed. 

Theorem 14 emphasizes that if /3 and 8 are sufficiently small, then a unique 
full trade equilibrium exists. Nevertheless, Theorem 2, our main existence the- 
orem, makes no mention of uniqueness. The reason is that we do not know 
whether non-full-trade equilibria do or do not exist. We note, however, that 
these existence issues are delicate and depend on details of the model. For- 
mula (57) for S(.), with its sensitivity to P, is a direct consequence of our 
assumption that a seller cannot commit to a reservation price until after she 
receives her bids. For full trade equilibria, if the model permitted all sellers 
with types c E [0, c] to commit to the reservation price B(v) = c, then equilib- 
ria would exist for large /3 provided 8 were sufficiently small.15 

Turn now to the second issue: the rate of convergence. Let p be sufficiently 
small relative to K so that a full trade equilibrium exists. Differentiability of the 
solution to the characterizing equations in a neighborhood of (/3, 8) = (0, 0) 
immediately implies that the descriptors of the full trade equilibrium all con- 
verge to their limiting values at a linear rate: -(5), c(8), V((), v(8), p(6), 
p(8) = pw + o(8) and ?(8) = (* + o(8). Furthermore, convergence of interim 
and ex ante welfare also is linear, e.g., Wss(c) = max[0, Pw - c] + o(8) and 
WB8(v) = max[0, v - Pw] + o(8). 

The mechanics underlying these linear rates can be seen by breaking the 
inefficiency of these equilibria into its two sources: delay costs and exclusion 
costs. First, given the matching technology of the market, a full trade equilib- 
rium minimizes delay because if a seller is matched with at least one buyer, then 
trade occurs. Delay with its associated costs of K per unit time occurs because 
the matching technology each period fails to match iro = e-? proportion of the 

15Ability to commit on the part of sellers would make it straightforward to compute examples 
of non-full-trade equilibria. It would not, however, immediately resolve our inability to prove 
existence of non-full-trade equilibria. 
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sellers to one or more sellers and, as a result, 7To proportion of sellers fail to 
trade each period. The welfare losses due to delay therefore decrease with 8; 
this is most easily seen from (12) for sellers' discounted expected participa- 
tion costs coupled with the observation that ps(S(c)) = -ro() = 1 - "ro(8) = e-<* + o(8). Second, exclusion costs arise from the "wedge" between c(5), the 
highest cost seller who enters, and v(8), the lowest value buyer who enters. 
These traders, not being active, do not trade in the full trade equilibrium, yet 
roughly half would enter and trade if 8 approached zero and the market ap- 
proached full efficiency. The ex ante welfare loss that this exclusion causes is 
proportional to (V(8) - c(5))2, i.e., it is quadratic in the thickness of the wedge. 
Observe that (68) - c(8) approaches zero linearly because V(8) and c(5) each 
approach pw at a linear rate. Given this linear shrinkage of the wedge, ex ante 
welfare shrinks quadratically because each time the wedge is halved, (i) only 
half as many traders are excluded and (ii) the traders who are excluded have 
only half the potential gains from trade that the traders who are no longer 
excluded expect to realize.16 Finally, summing these two rates gives an over- 
all linear rate because, for small 8, the linear convergence of the delay costs 
dominates the quadratic convergence of the exclusion costs. 

This rate of convergence for full trade equilibria is nice, yet we make no men- 
tion of it in either Theorem 1 or Theorem 2. The reason is that, for a particular 
value of 8, the existence of a unique full trade equilibrium does not rule out 
another equilibrium that is not full trade, except for the special case of no time 
discounting. Proving a theorem that establishes a linear rate of convergence 
for all equilibria is formidable because every step in our proofs becomes much 
more complex whether it be in deriving a set of characterizing equations, apply- 
ing the implicit function theorem, or showing that the characterizing equations 
identify all equilibria. 

6. CONCLUSIONS 

In this paper we have shown that convergence to the competitive price and 
allocation can be achieved with a decentralized matching and bargaining mar- 
ket in which all traders have private information about their values/costs. The 
significance of this contribution is that it directly addresses a critical shortcom- 
ing in each of two literatures it combines. Existing matching and bargaining 

16The quadratic rate of convergence to efficiency that Satterthwaite and Williams (1989a) 
and Rustichini, Satterthwaite, and Williams (1994) obtained for the static double auction with 
independent private values follows analogous logic. Traders in bidding misrepresent their true 
cost/value. This difference between the bid and the cost/value creates a wedge that excludes 
trades that would be efficient. The thickness of the wedge goes to zero linearly in the number 
of traders and, as in the case here, this causes the expected inefficiency in per trader terms to 
go to zero quadratically. In the static double auction, by construction, no delay costs exist, so the 
overall rate of convergence to efficiency is the quadratic rate for the exclusion costs. 
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models that demonstrate robust convergence ignore the ubiquity of incom- 
plete information. Existing double auction models robustly demonstrate con- 
vergence in the presence of incomplete information, but ignore the equally 
ubiquitous future opportunities for trade that exist in almost all real markets. 
Our model and results cure both these shortcomings in the independent pri- 
vate values case. 

Of the many open questions that remain, we mention two. First, no con- 
strained optimal benchmark has been derived for the dynamic matching and 
bargaining model with incomplete information. Presumably mechanism design 
techniques can be used to establish such a benchmark.17 Then it would be possi- 
ble to compare the realized efficiency of models such as ours that have specific 
matching and bargaining protocols against the efficiency of the constrained 
optimal mechanism. Second, we assume an independent private values envi- 
ronment. Relaxing this assumption to allow costs/values to be correlated or 
interdependent would, to be interesting, involve letting the underlying Wal- 
rasian price vary over time according to some stochastic process. The mecha- 
nism then would have the demanding task of converging, as the period length 
becomes short, to this nonstationary price. Such a model would give insight 
into how robustly decentralized matching markets can "discover" price in a dy- 
namic market just as the recent papers of Fudenberg, Mobius, and Szeidl (in 
press), Reny and Perry (2003), and Cripps and Swinkels (2006) have shown that 
the static double auction can discover price in environments more general than 
the independent private values with unit demand and supply environment. 

If these and other questions can be answered in future work, then this theory 
may become useful in designing decentralized markets with incomplete infor- 
mation in much the same way auction theory has become useful in designing 
specific auctions for real allocation problems. The ubiquity of the Internet, 
with its capability for facilitating matches and reducing period length, makes 
pursuit of this end attractive. 
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